
JOURNAL OF COMPUTATIONAL PHYSICS 137, 186–211 (1997)
ARTICLE NO. CP975799

A Spectral Solver for the Navier–Stokes
Equations in the Velocity–Vorticity
Formulation for Flows with Two

Nonperiodic Directions

H. J. H. Clercx

Department of Physics, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

E-mail: clercx@tns.phys.tue.nl

Received December 19, 1996; revised July 16, 1997

A novel pseudospectral solution procedure for the Navier–Stokes equa-
tions in the velocity–vorticity formulation, suitable to simulate flows with two
nonperiodic directions, is proposed. An influence matrix method, including a
tau correction procedure, has been employed to elicit an algorithmic substitute
for the a priori lacking boundary conditions for the vorticity. Following O.
Daube (J. Comput. Phys. 103, 402 (1992)) the influence matrix is built by
enforcing either the definition of the vorticity or the continuity equation at
the boundary of the domain. The influence matrix is nonsingular in both
cases. The order of the influence matrix is twice larger than one would expect
from analogous solution methods based on finite differences or finite elements.
The spatial discretization is based on a 2D Chebyshev expansion on a nonstag-
gered grid of collocation points, and the boundary conditions are imposed
via the Lanczos tau procedure. The time marching scheme is Adams–
Bashforth for the advection term and Crank–Nicolson for the viscous term.
The proposed scheme yields machine accurate divergence–free flow fields,
and the definition of the vorticity is satisfied within machine accuracy. Q 1997
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1. INTRODUCTION

In recent years several studies appeared on the numerical solution of the (un-
steady) Navier–Stokes equations in the velocity–vorticity (u, g) formulation [1–11].
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All these numerical solution procedures are based on finite difference or finite
element techniques for the spatial discretization of the Navier–Stokes equations.
It is remarkable that thus far no attempts to solve the velocity–vorticity equations
with spectral or pseudospectral methods have been reported in the literature, al-
though hybrid techniques are known where finite differences are used in two direc-
tions and Fourier modes are employed for the third direction. Spectral methods
are becoming an increasingly popular tool for the investigation of fundamental
processes in fluid dynamics such as the transition to turbulence in flow phenomena
like boundary layers, mixing layers, and free shear layers, but also for fundamental
studies of 2D and 3D homogeneous isotropic turbulence. The advantages of em-
ploying spectral methods in the investigation of these phenomena are the exponen-
tial convergence behaviour and the strongly reduced numerical damping and disper-
sion properties. These properties make spectral methods particularly suited for
direct numerical simulations (DNS) of turbulent flows and underlines the impor-
tance of spectral methods as a complementary tool in bridging the gap between
fundamental studies of turbulence and investigations of flows with engineering
relevance. Finite difference and finite element methods are generally better suited
for numerical simulations of flows in complex geometries, but for such problems
the spectral element method has been proposed recently and applied successfully.

The aim of the present paper is to elucidate an approach to solving the Navier–
Stokes equations in the (u, g) formulation with a pseudospectral method based on
the expansion of the components of the velocity and the vorticity in a double
truncated series of Chebyshev polynomials. The discretized set of equations consists
of a Helmholtz equation for the vorticity and Poisson equations for the components
of the velocity. The key element is the application of an influence matrix technique
in order to obtain the a priori unknown boundary values of the vorticity and to
implement a so-called tau correction to eliminate the effects of discretization errors.
The tau correction appears to be essential; a naive approach without tau correction
leads to catastrophical numerical instabilities. The order of the nonsingular influence
matrix is twice larger than one would expect from analogous solution methods
based on finite differences or finite elements, but is the same as the order for the
influence matrix applied in pseudospectral methods based on the primitive variable
formulation of the Navier–Stokes equations [12].

For the (numerical) investigation of vortex dominated flows it appeared that the
velocity–vorticity formulation of the Navier–Stokes equations is often the most
appropriate choice. An important reason is that in such flows the advection of
vorticity is one of the most important processes determining the flow dynamics,
and studying such flows in terms of vorticity and velocity is closer to physical reality.
A few more arguments in favour of the (u, g) formulation can be found in the
literature. For example, as already indicated by some authors [10, 11], the treatment
of the boundary conditions might be easier in some specific situations. An example
is that of external flows where the boundary conditions at infinity are easier to
implement for the vorticity than for the pressure. Another advantage shows up
when this method is applied to problems in a noninertial frame of reference. As
discussed by Speziale [13], it can be shown that the noninertial effects only enter
into the solution procedure of the velocity–vorticity equations via the (proper)
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implementation of the initial and boundary conditions. As a consequence, the
general applicability of a numerical algorithm based on the (u, g) formulation is
enhanced compared to other formulations; it is independent of whether or not the
frame of reference is inertial. Finally, the most natural relation between vortex and
particle methods on the one hand and the Navier–Stokes equations on the other
is the velocity–vorticity formulation of the latter. This has advantages in studying
the inviscid limit of the Navier–Stokes equations (Euler equations), or it results
eventually in a better understanding of vortex methods near no-slip boundaries. A
disadvantage of the velocity–vorticity formulation, compared with the primitive
variable formulation, is that in the most general three-dimensional case the (u, g)
formulation requires more equations (total six) to be solved than the primitive
variable formulation (total four). However, this constraint on the (u, g) formulation
can be relaxed when the flow is periodic in at least one direction, or when particular
techniques are used as described recently by Shen and Loc [14]. In their simulations
of 3D flows around a cube or a sphere with a finite difference scheme, they solved,
besides the vorticity transport equation for the three components of the vorticity,
only two Poisson equations for the velocity. The third component was obtained by
using the continuity equation. Additionally, the use of parallel processors makes
the number of elliptic equations, which have to be solved in either the primitive
variable or the velocity–vorticity formulation, of minor importance. Several relevant
aspects concerning numerical simulations of incompressible viscous flows are dis-
cussed in Quartapelle [11], where the crucial issue of the boundary conditions is
also investigated in detail.

First results of numerical simulations of the unsteady Navier–Stokes equations
based on the velocity–vorticity formulation were reported by Fasel [1], who investi-
gated the stability of boundary layers in two dimensions by a finite difference model.
The approach used by Fasel consists of solving a parabolic equation for the vorticity
and Poisson equations for the velocity field. Dennis, Ingham, and Cook [2] presented
results of a numerical study of three-dimensional steady flows which was also
based on finite difference techniques. Another approach, based on compact finite
difference schemes, has been introduced by Gatski, Grosch, and Rose [3, 4]. In
their study of the flow in 2D driven square and rectangular cavities the vorticity
equation has been solved, together with two first-order partial differential equations,
viz. the continuity equation and the definition of the vorticity. More recently several
numerical recipes have been devised to solve the steady state 3D Navier–Stokes
equations for flows in a cubic cavity [6, 8]. Subsonic internal flow problems have
also been studied with the velocity–vorticity approach. With a finite element solution
of the 3D compressible Navier–Stokes equations Guevremont et al. [9] have investi-
gated the steady state flow in a cubic cavity for several Mach numbers. These 3D
flow simulations have all been restricted to quite low Reynolds numbers due to
fast-growing computational cost with increasing Reynolds number.

Organization of this paper is as follows: in the following section we recall the
governing equations in dimensionless form, the time discretization scheme, and the
spatial approximation by a Chebyshev pseudospectral method. In Section 3 the
application of the influence matrix technique, based on enforcing the definition of
the vorticity on the boundary, in the form proposed by Daube [10], is discussed.
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The tau correction for the vorticity is then proposed in Section 4. Again along
Daube’s work, an alternative approach, based on enforcing the continuity equation
on the boundary, is discussed in Section 5. We conclude with a brief discussion and
summary of the results.

2. DISCRETIZATION OF THE GOVERNING EQUATIONS

2.1. Formulation of the Problem

We consider a two-dimensional square domain D with boundary D. The
Cartesian coordinates in a frame of reference are denoted by x and y. The equation
governing the nondimensional (scalar) vorticity is obtained by taking the curl of
the momentum equation and has the form

g
t

1 (u ? =)g 5
1

Re
=2g in D, (1)

where u 5 (u, v) and g 5 v/x 2 u/y are the dimensionless velocity vector and
the vorticity, respectively. The Reynolds number is defined as Re 5 UL/n with U
a characteristic velocity, L a characteristic length scale, and n the kinematic viscosity.
The vorticity equation (1) must be combined with the definition of the vorticity
and the continuity equation, as well as the boundary conditions for the velocity,

k ? = 3 u 5 g in D,

= ? u 5 0 in D, (2)

u 5 ub on D,

where the unit vector k is normal to the flow domain. An initial condition, gut50 5

k ? = 3 u0, where u0 is the initial velocity field, is also supplemented. Furthermore,
the boundary velocity ub has to satisfy a compatibility condition which follows
from the integration of the continuity equation over the domain D, applying the
divergence theorem, and using the velocity boundary condition, resulting in

E
D

n ? ub ds 5 0, (3)

where n is the unit vector normal to the boundary and ds denotes the length of an
infinitesimal element of the boundary D.

In solving the vorticity equation (1), together with Eq. (2), the difficulty is that
there is no boundary condition for the vorticity at solid walls since the no-slip
condition for the velocity cannot be reformulated in equivalent conditions of bound-
ary value type for the vorticity. Special methods have to be employed in order to
determine the boundary value of the vorticity, which range from approximate
techniques based on interpolation to more satisfactory methods relying upon a
rigorous mathematical foundation such as the influence matrix method and the
application of vorticity integral conditions [11]. An example of the latter approach
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was recently reported by Nguyen, Paik, and Chung [15] who applied this method
to incompressible flows with two nonperiodic directions in the stream function–
vorticity formulation.

Daube [10] has shown that the formulation of the equations of motion in the
form presented by Eqs. (1) and (2) is mathematically equivalent to the set consisting
of the vorticity equation (1), together with the relations:

k ? = 3 u 5 g on D,

=2u 5 k 3 =g in D, (4)

u 5 ub on D.

For the details we refer to the paper by Daube [10]. Our approach will be based
on the set of Eqs. (1) and (4).

2.2. Time Discretization

The time discretization of the vorticity equation considered in this work is semi-
implicit and uses the explicit Adams–Bashforth scheme for the advection term
and the implicit Crank–Nicolson procedure for the diffusive term—a combination
generally referred to as the ABCN scheme. The time-discretized equations based
on the ABCN scheme, where the superscript denotes the time-level at which the
variables are considered (for example, gn11 5 g((n 1 1)Dt)) are

(=2 2 l)gn11 5 Sn,n21 in D,

=2un11 5 k 3 =gn11 in D,
(5)

un11 5 un11
b on D,

k ? = 3 un11 5 g n11 on D,

where l 5 2Re/Dt. The quantity Sn,n21, with n $ 1, includes only terms already
known,

Sn,n21 5 2(=2 1 l)gn 1 Re[3(u ? =g)n 2 (u ? =g)n21]. (6)

An alternative time discretization must be used for the first time integration step
in order to keep the overall time integration scheme second-order accurate. We
can conclude that, thanks to the time discretization, the set of Eqs. (1) and (4) is
reduced to a linear set and that the vorticity and velocity fields may be determined
by solving elliptic equations when the boundary conditions are known.

2.3. Spatial Approximation

The flow domain of interest is a two-dimensional square cavity of width L—in
dimensionless form the square [21, 1] 3 [21, 1]. No-slip boundary conditions for
the velocity are assumed which requires a high resolution near the solid boundaries
of the container. This requirement is satisfied by employing a pseudospectral method
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based on the expansion of the relevant flow parameters in terms of Chebyshev
polynomials Tn(x) which have the property that the zeros of these polynomials
condense near the boundaries (the distance between adjacent zeros of Tn(x) near
the boundary is O(n22)). The vorticity and both components of the velocity are
expanded in a double-truncated series of Chebyshev polynomials, i.e.,

g(x, y, t) 5 ON
n50

OM
m50

ĝnm(t)Tn(x)Tm(y), (7)

u(x, y, t) 5 ON
n50

OM
m50

ûnm(t)Tn(x)Tm(y), (8)

where the Chebyshev polynomials Tn(x) 5 cos(nu) with u 5 cos21(x). For conve-
nience the number of Chebyshev polynomials in these expansions are always chosen
such that N and M are even. By using the orthogonality relationships for Chebyshev
polynomials, based on employing a collocation procedure at the Chebyshev–Gauss–
Lobatto points, the expansion coefficients are obtained [16]. Transformations from
physical space to the spectral space of expansion coefficients, and vice versa, can
be performed efficiently by employing fast Fourier transform (FFT) methods [17].
For more details about the use of Chebyshev polynomials in spectral methods the
reader can consult Canuto et al. [16].

All calculations, except the evaluation of the nonlinear terms, are performed in
spectral space; i.e., the coefficients ĝnm(t) and ûnm(t) are marched in time. FFT
methods are used to evaluate the nonlinear terms following the procedure designed
by Orszag [18], where the padding technique has been used for de-aliasing (the
FFT employed is based on the primes 2, 3, and 5). Both the Helmholtz and Poisson
equations (see Eq. (5)) can be solved very efficiently with the Haidvogel–Zang
algorithm [19]. The boundary conditions are imposed with the Lanczos tau method
by dropping the last two equations corresponding to the two highest modes of the
Chebyshev expansion in each direction and by evaluating the coefficients of the
last two modes explicitly in terms of the boundary values (see for details Refs. [16,
19, 20]). Numerical simulations are made more efficient concerning CPU time
and memory requirements by employing an even–odd decoupling of the complete
algorithm (especially the elliptic solvers, the first and second derivative operators,
the Chebyshev FFTs, and the influence matrix).

3. THE INFLUENCE MATRIX BY ENFORCING THE VORTICITY DEFINITION

3.1. Introduction

The time discretized version of the vorticity equation is a linear elliptic partial
differential equation and it can be solved straightforwardly, provided that the bound-
ary condition for the vorticity is known. However, this boundary condition is not
available a priori and the vorticity boundary values are evaluated as a part of the
solution at each time step during time integration. The approach which we have
used to obtain the correct boundary values for the vorticity is the influence matrix
method. This method has already been used in previous studies to resolve the lack
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of boundary conditions for the pressure in simulations employing the primitive
variable formulation. Examples are the numerical investigations of plane channel
flow with one nonperiodic direction by Kleiser and Schumann [21], flows in cylindri-
cal geometries such as Taylor–Couette flow by Marcus [22], natural convection in
2D cavities by Le Quéré and Alziary de Roquefort [23], non-Boussinesq convection
by Le Quéré, Masson, Perrot [24], driven cavity flows by Madabhushi, Balachandar,
and Vanka [12]. The study of Daube [10] is an example of the use of an influence
matrix method in relation with the (u, g) formulation of the equations of motion,
with the spatial discretization based on finite differences.

Influence matrix techniques, originally due to Kleiser and Schumann [21] (for a
minor but important modification, see Werne [25]) are essentially based on the
superposition principle for linear problems. Application of this principle offers the
possibility to find solutions for elliptic problems with unknown boundary conditions
by considering the solution as a superposition of simple elementary problems with
known boundary conditions. The weight of each elementary solution is chosen in
a self-consistent way, satisfying some auxiliary conditions for the total solution such
as the definition of the vorticity and the requirement that the flow should be
divergence-free. Daube has shown how to implement this method for the velocity–
vorticity approach by showing that enforcement of the definition of the vorticity
on the boundary of the domain is mathematically sufficient to ensure the definition
of the vorticity in the domain itself. The same requirement is proved to be sufficient
to ensure that the velocity field is divergence-free in the domain and on the bound-
ary. We give a short outline of his approach in order to be self-contained.

3.2. Enforcement of the Definition of the Vorticity

The Poisson equations for the velocity field are derived by taking the curl of the
definition of the vorticity, i.e. = 3 (= 3 u) 5 = 3 (gk), subsequently using the
vector relation defining the Laplacian of a vector field, =2u 5 =(= ? u) 2 = 3

(= 3 u), and the assumption that the velocity field is divergence-free. The other
way around, the combination of the vorticity equation and Poisson equations for
the components of the velocity to obtain the flow field does not yield a priori
equivalent solutions as the original problem formulated by Eqs. (1) and (2), due
to absence of the correct vorticity boundary condition. There exists even an infinite
number of solutions of the vorticity equation combined with the Poisson equations,
and g is not necessarily the vorticity of u, i.e. k ? = 3 u 5 z, with z ? g. In addition,
the resulting velocity field is also not necessarily divergence-free. In order to obtain
a divergence-free velocity field which also satisfies the vorticity definition, the follow-
ing equation must be enforced:

=2u 5 =(= ? u) 1 k 3 =z 5 k 3 =g. (9)

Following Daube we take the cross product of (9) with k and take the divergence
of the resulting equation. We then arrive at

=2(z 2 g) 5 0 in D. (10)
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By known properties of harmonic functions, satisfying the requirement z 5 g in
the domain, it suffices to demand that z 5 g on the boundary of the domain. Daube
has also proved that when z 5 g on the boundary of the domain, the velocity field
is divergence-free.

Enforcement of the definition of the vorticity on the boundary of the domain
will be performed by the influence matrix method. Suppose that the vorticity and
velocity fields can be written in terms of a particular solution and a set of complemen-
tary solutions

g 5 ĝ 1 OP
i51

aigi , u 5 û 1 OP
i51

ai ui, (11)

where the summation i 5 1 to P represents all the boundary points, excluding the
corner points, in some sequential manner with P 5 2N 1 2M 2 4 for the total
number of relevant boundary points. The corner points can be excluded because
the vorticity at the corners is automatically equal to zero, due to the absence of a
normal component of the flow on the boundary. It should be emphasized that this
treatment of the four corner values of the vorticity is basically a pragmatic choice
and is not entirely justified mathematically. The particular solutions ĝ and û are
obtained by using an arbitrary boundary condition for the vorticity to solve Eq.
(5); the most obvious two are putting ĝ 5 0 or using the boundary values of the
vorticity obtained at the preceding time step. With the calculated vorticity field the
velocity can be obtained by solving the Poisson equations. As stated before, the
resulting flow field is not divergence-free and k ? = 3 u 5 z ? g. The complementary
solutions for the vorticity are solutions of the vorticity equation with zero source
term and with zero boundary conditions, except at one of the boundary nodes
where it equals one. Subsequently the Poisson equations for the corresponding
velocity field are solved. Summarizing, gi and ui are solutions of the set of equations,

(=2 2 l)g i 5 0 in D with gi(cj) 5 dij on D,

=2ui 5 k 3 =g i in D, (12)

ui 5 0 on D,

where i is running from 1 to P, cj are the respective boundary nodes excluding the
corners, and dij is the Kronecker symbol. All coefficients ai are obtained by de-
manding k ? = 3 u 5 g on the boundary. Using Eq. (11) this yields

(ẑ 2 ĝ)j 1 OP
i51

ai(zi 2 gi)j 5 0 ;j [ h1, ..., P j, (13)

where (zi 2 gi)j ; Mji are the elements of the influence matrix M. The coefficients
ai , which are the unknown values of the vorticity on the boundary nodes, are
determined via

ai 5 2OP
j51

(M21)ij (ẑ 2 ĝ)j . (14)
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At this stage the correct boundary values for the vorticity are known and the
set of Eqs. (5) can be solved, again, now using the new vorticity distribution on
the boundary.

This approach, without application of a tau correction to remove discretization
errors, appears to be numerically unstable. It is noteworthy that an analogous
approach applied to the Navier–Stokes equations in primitive variables does not
lead to numerical instabilities, although the velocity field is not divergence-free.

4. TAU CORRECTION FOR THE VORTICITY

The reason for the numerical instabilities appears to be that, despite the fact that
the definition of the vorticity is satisfied within machine accuracy on the boundary
of the domain, it is not in the interior. This observation leads also to the conclusion
that the flow cannot be divergence-free. Both observations seem to contradict the
theoretical analysis presented by Daube, which can be explained in the following
way: the solution procedure for Poisson or Helmholtz equations in spectral space
does not make use of the highest frequency modes of the spectral representation
of the source term. This is due to imposing the boundary conditions via the (Lanczos)
spectral tau method. For details of the implementation of the spectral tau method,
particularly the treatment of the high frequency modes, the reader is referred to,
e.g., Canuto et al. [16], Haidvogel and Zang [19], and Tuckerman [20]. As a conse-
quence of applying the tau method the elliptic partial differential equations (for
example, those presented in Eq. (5)) are not satisfied numerically for the highest
frequency modes, or, conversely, substituting the solution in the original differential
equation does not yield high frequency modes which agree with those of the corre-
sponding source term. Let us illustrate the problem with the Poisson equations for
the velocity field. The numerical equivalent of Eq. (9) can be formulated as =2u 5

k 3 =g 1 B, with B the representation in physical space of the highest frequency
modes. The Chebyshev expansion coefficients B̂nm are zero for n # N 2 2 and
m # M 2 2. The nonzero modes of B̂nm are usually referred to as high frequency
residuals, and the solution of the Poisson equations is independent of the particular
values of the high frequency residuals. As a consequence the velocity field is indepen-
dent of B. However, the appearance of high frequency residuals when applying
spectral tau methods make straightforward employment of the theoretical analysis
presented by Daube impossible; a modification is necessary. The same difficulties
arise for collocation methods (see, e.g., Refs. [20, 12]) and also when the primitive
variable formulation (u, p) is employed (high frequency residuals in the momentum
equations contaminate the Poisson equation for the pressure). The approach to
solving this kind of numerical problems is to impose a so-called tau correction in
order to adjust these discretization errors.

Consider the Poisson equations for the velocity field, Eq. (9). Anticipating impos-
ing a tau correction, this equation should be rewritten in the form

(15)=2u 5 =(= ? u) 1 k 3 =z 5 k 3 =g 1 B,
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where B is a priori unequal to zero. These modes do not affect the velocity field
u itself. Following the procedure suggested by Daube we obtain

(16)=2(z 2 g) 5 2= ? (k 3 B),

which is evidently not a Laplace equation but a Poisson equation. Although the
high frequency modes do not affect the velocity field they do affect the difference
between z and g, because of the appearance of low frequency modes due to differen-
tiation of B in Eq. (16) (differentiation of a Chebyshev polynomial of degree n
results in the appearance of Chebyshev polynomials of lower degree). Consequently,
the term 2= ? (k 3 B) 5 k ? = 3 B acts as a source term, and Daube’s procedure,
based on using the maximum principle for Laplace equations, is no longer effective.
This difficulty can be resolved by demanding that the high frequency modes which
give low frequency contributions to the RHS of Eq. (16) should be zero. The
solution (u, g) should satisfy this demand self-consistently (see Eq. (15)). The
relevant modes with low frequency contributions in the source term of Eq. (16)
are: Bx 5 Tn(x)Tm(y), with 0 # n # N 2 2 and m equal to M 2 1 or M, and
By 5 Tn(x)Tm(y), with n equal to N 2 1 or N and 0 # m # M 2 2.

The following procedure has been devised to eliminate these particular high
frequency residuals of B. As a first step the vorticity equation is modified by
including an additional source term, k ? = 3 B, with B a priori unknown high
frequency modes,

(17)(=2 2 l)g 5 S 1 k ? = 3 B,

i.e. an adapted version of Eq. (5) [26]. Together with the unknown boundary
conditions for the vorticity, the high frequency modes B have to be determined.
This should be done in such way that the relevant high frequency modes B in the
Poisson equations for the velocity field are equal to zero self-consistently; i.e., the
solution u must satisfy: =2u 2 k 3 =g ; 0. Actually, an analogous procedure to
adjust for discretization errors when solving the Navier–Stokes equations in the
(u, p) formulation with a collocation method has been proposed recently by Madab-
hushi, Balachandar, and Vanka [12]. The discretization errors appearing in their
approach are due to the fact that the differential equations are not satisfied on the
boundary of the domain. A thorough mathematical analysis of the application of
tau and collocation corrections has been presented by Tuckerman [20].

Elimination of B can be achieved by writing the vorticity and velocity fields in
terms of a particular solution and two sets of complementary solutions,

g 5 ĝ 1 OP
i51

aigi 1 OQ
i51

bigi (18)

and

u 5 û 1 OP
i51

aiui 1 OQ
i51

biui , (19)
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with P 5 2N 1 2M 2 4 for the total number of boundary points excluding the
corner points, where g ; 0, and Q for the total number of relevant high frequency
modes. The particular solutions and the first set of complementary solutions are
obtained as explained in Section 3. The second set of complementary functions for
the vorticity are solutions of the vorticity equation with zero source term S and
with zero boundary conditions. Furthermore, all high-frequency modes are set equal
to zero, except specific combinations (the specific choice will be discussed below).
Subsequently, the Poisson equations for the corresponding velocity field can be
solved. As might be expected, the curl of the velocity field is not equal to the
vorticity gi . Summarizing, gi and ui are solutions of the set of equations,

(=2 2 l)gi 5 k ? (= 3 bi) in D, with gi 5 0 and D,

=2ui 5 k 3 =gi in D, (20)

ui 5 0 on D,

where the yet unspecified bi , with i 5 1, ..., Q, are the high frequency modes which
are subsequently excited. It is not difficult to see that not all high frequency modes
b 5 (bx , by) are important. Modes of bx containing products of Tm(y) with TN21(x)
or TN(x) remain, after differentiation with respect to y, high frequency modes and
do not affect the solution of the vorticity. The other modes, containing products
of Tn(x) with TM21(y) or TM(y), yield, after differentiation with respect to y, low
frequency modes. The numerically relevant high frequency modes are bx 5

Tn(x)Tm(y) with 0 # n # N 2 2 and m equal to M 2 1 or M. Using analogous
reasoning one can show that the relevant high frequency modes by are represented
by by 5 Tn(x)Tm(y), with n equal to N 2 1 or N and 0 # m # M 2 2. The total
number of relevant high frequency modes is thus 2N 1 2M 2 4. However, four
special linear combinations of high frequency modes exist which can be identified
as an irrotational part of B. These linear combinations will not affect the vorticity
field via Eq. (17) and are thus useless for the adjustment procedure of B. Without
filtering these modes the resulting influence matrix is singular; it has four zero
eigenvalues. Special procedures exist to circumvent these difficulties [20]. However,
when we reduce the number of excited high-frequency modes by four in such way
that none of the linear combinations of the remaining modes is irrotational (= 3

B ? 0), the influence matrix is invertible. The total number of relevant high fre-
quency modes reduces to Q 5 2N 1 2M 2 8. The specific implementation for
adjusting the influence matrix in order to avoid irrotational modes of B is rather
arbitrary; in the present case the high frequency modes Ts(x)TM21(y) and
Ts(x)TM(y), with s 5 0 or 1, are replaced by the modes [Ts(x) 2 TN222s(x)]TM21(y)
and [Ts(x) 2 TN222s(x)]TM(y), respectively. Furthermore, the modes TN222s(x)
TM21(y) and TN222s(x)TM(y) are not excited when building the influence matrix.

Coefficients ai and bi are obtained by simultaneously putting k ? = 3 u 5 g at
all boundary nodes and requiring that all (relevant) high frequency modes in the
Poisson equations for the velocity field are self-consistently equal to zero. The
following set of equations (with j running over the appropriate values) for the
coefficients ai and bi should then be solved to satisfy these requirements,
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(ẑ 2 ĝ) j 1 OP
i51

ai(zi 2 gi)j 1 OQ
i51

bi(zi 2 gi)j 5 0, (21)

B̂j 1 SOP
i51

aiBiD
j
1 SOQ

i51
biBiD

j
5 0, (22)

where B̂ 5 =2û 2 k 3 =ĝ, Bi 5 =2ui 2 k 3 =gi (with i 5 1, ..., P) and Bi 5

=2ui 2 k 3 =gi (with i 5 1, ..., Q) are the high frequency residuals of the Poisson
equations for the components of the velocity of the particular solution and the two
sets of complementary solutions, respectively. The influence matrix M has now
the form

M 5 FM11
j i M12

j i

M21
j i M22

j i
G5 F(zi 2 gi)j (zi 2 gi)j

(Bi)j (Bi)j
G, (23)

and is a (4N 1 4M 2 12) 3 (4N 1 4M 2 12) matrix. The coefficients ai , representing
the boundary values of the vorticity, and bi , the weights of the additional source
terms k ? = 3 bi in the vorticity equation, are determined by inversion of the
influence matrix,

ai 5 2OP
j51

(M21)11
i j (ẑ 2 ĝ)j 2 OQ

j51
(M21)12

i j B̂j , (24)

bi 5 2OP
j51

(M21)21
i j (ẑ 2 ĝ)j 2 OQ

j51
(M21)22

i j B̂j . (25)

As explained in Section 3 we proceed now by determining the vorticity and velocity
field by solving Eq. (5) with the correct boundary values for the vorticity and the
adjusted high frequency modes.

The influence matrix is calculated in a preprocessing stage and its inverse is stored
before the actual time integration procedure is started. The influence matrix can
become very large when the number of modes increases. However, an even–odd
decoupling of the algorithm results in four smaller influence matrices which are
related with even–even, even–odd, odd–even, and odd–odd modes in the x and y
directions, respectively. The size of these matrices is of the order (N 1 M) 3

(N 1 M), which reduces the storage requirements of the influence matrix by roughly
by a factor of four.

The solution cycle during time integration can be summarized as follows:

(i) Solve for the particular solution of the vorticity, (=2 2 l)ĝ 5 S, with ĝ 5 0
on D;

(ii) Solve the Poisson equations to obtain the particular solution of the velocity
field, =2û 5 k 3 =ĝ;

(iii) Compute ẑ 5 k ? = 3 û on the boundary of the domain and the high
frequency residual of the Poisson equations corresponding to the particular solution,
B̂ 5 =2û 2 k 3 =ĝ;
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(iv) Determine the boundary values of the vorticity (ai) and the additional

source term of the vorticity equation, k ? = 3 B ; OQ
i51

bik ? (= 3 bi);

(v) Recompute the vorticity field with the new boundary values of the vorticity
and the additional source term, (=2 2 l)g 5 S 1 k ? = 3 B;

(vi) Recompute the source term of the Poisson equations, k 3 =g, and solve
for the new velocity field.

In Sections 3 and 4 an influence matrix technique has been introduced for a
spectral tau approach. A naturally occurring question concerning the numerical
instabilities is then: Might numerical instabilities be avoided by performing the
calculations in physical space (via a Chebyshev collocation procedure) instead of
spectral space? The absence of high frequency residuals when the calculations are
carried out in physical space seems to support the idea that enforcing the definition
of the vorticity on the boundary is a sufficient condition to obtain divergence-
free flow fields without the presence of numerical instabilities. Unfortunately, the
discrete spatial representation of the Poisson equations for the velocity field is not
satisfied on the boundaries of the domain, i.e. =2u 5 k 3 =g 1 B, with B in this
case the so-called boundary residual (cf. Ref. [12] for a collocation correction in a
Chebyshev collocation procedure for the simulation of the Navier–Stokes equations
in primitive variables). Again, Daube’s procedure cannot be applied in its original
form, and it might be expected that the implementation of an influence matrix
technique, without taking into account a correction for boundary residuals, leads
to numerical instabilities.

5. THE INFLUENCE MATRIX BY ENFORCING THE CONTINUITY EQUATION

An alternative set of equations can be formulated which gives formally equivalent
results as Eq. (5) [10]. This equivalent set (time discretized version) has the form

(=2 2 l)g 5 S in D,

=2u 5 k 3 =g in D,

u 5 ub on D, (26)

= ? u 5 0 on D,

gut50 5 k ? = 3 u0 in D.

The vorticity field in the computational domain D should also satisfy the integral
condition expressing that the vorticity integrated over the domain D is equal to
the contour integral of the tangential component of the velocity along the boundary
of the domain D (application of Stokes theorem),

E
D

g(x, y) dx dy 5 E
D

t ? ub ds, (27)
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where t denotes the unit vector tangential to the boundary and ds denotes the
length of an infinitesimal element of the boundary D. The mathematical foundation
of the present set of equations is, again, based on the enforcement of

(28)=2u 5 =(= ? u) 1 k 3 =z 5 k 3 =g.

After taking the divergence of (28) we arrive at

(29)=2(= ? u) 5 0 in D,

and using the maximum-principle for Laplace equations it can be shown that it is
sufficient to enforce = ? u 5 0 on the boundary of the domain in order to enforce
the continuity equation everywhere in D. When this condition is satisfied it can be
shown that =(z 2 g) 5 0, or equivalently, k ? = 3 u 2 g is constant in D. But, by
the integral condition (27), the constant can be shown to be zero.

Without tau correction, the approach based on enforcing the continuity equation
at the boundaries is numerically unstable. Thus, as is the case when enforcing the
definition of the vorticity, we have to correct for discretization errors due to the
application of Lanczos tau procedure to impose the boundary conditions. The
numerical equivalent of Eq. (28) is =2u 5 k 3 =g 1 B, where B is a priori unequal
to zero. Following the procedure suggested by Daube we obtain for the numerical
equivalent of Eq. (29)

=2(= ? u) 5 = ? B. (30)

The maximum principle for Laplace equations is no longer effective, and an analo-
gous procedure as in Section 4 can be devised to circumvent these difficulties.
Consider Eq. (17), (=2 2 l)g 5 S 1 k ? = 3 B. We have to find a specific B such
that the relevant high frequency modes B are equal to zero. These modes are for
this particular case: Bx 5 Tn(x)Tm(y), with n equal to N 2 1 or N and 0 # m #

M 2 2, and By 5 Tn(x)Tm(y), with 0 # n # N 2 2 and m equal to M 2 1 or M.
Note that these modes are not the same as those in Section 4. The so-called
irrotational part of B is singled out with an analogous filtering procedure as described
in Section 4, resulting in an invertible influence matrix. Introducing a particular
solution and two complementary solutions of u and g (Eqs. (18) and (19)) we can
proceed as in Section 4. Coefficients ai and bi are obtained by simultaneously
putting = ? u 5 0 at all boundary nodes and requiring that all relevant high frequency
modes in the Poisson equations for the velocity field are self-consistently equal to
zero. The following set of equations (with j running over the appropriate values)
for the coefficients ai and bi should then be solved to satisfy these requirements

(= ? û)j 1 OP
i51

ai(= ? ui)j 1 OQ
i51

bi(= ? ui)j 5 0, (31)

B̂j 1 SOP
i51

aiBiD
j
1 SOQ

i51
biBiD

j
5 0, (32)
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with B̂ etc. defined as below Eq. (22), P 5 2N 1 2M 2 4 (= ? u ; 0 at the corners
of the domain), and Q 5 2N 1 2M 2 8. It is obvious that we take into account
those modes which contaminate the RHS of Eq. (30) with low frequency modes.
In order to satisfy the condition z 5 g in D, four equations of Eq. (31) have to be
sacrificed (instead of one as in Daube’s case) and replaced by the following condi-
tions: z 2 g 5 0 for the Chebyshev modes (n, m) equal to (0, 0), (0, M), (N, 0),
and (N, M). Enforcement of the constant mode is trivial. The need to enforce z 2 g
for these three particular high frequency modes is due to the fact that, when applying
a tau method, we effectively have to ensure that =(z 2 g) 5 0 for the low frequency
modes. Thus there exists still some degree of freedom for z 2 g which has to be
enforced. Only three modes of z 2 g exist of which the gradients are outside the
low frequency range. For simplicity, let us consider only the following combination
of Chebyshev modes (related with mode (N, 0)),

z 2 g 5 A F1
N

TN(x) 2
1

N 2 2
TN22(x)G, (33)

where A is some arbitrary constant. It is not difficult to see that (z 2 g)/y 5 0
and (z 2 g)/x 5 2ATN21(x); thus =(z 2 g) has only a contribution in the high
frequency range. To ensure that nevertheless z 5 g it has to be assured that the
mode represented by Eq. (33) disappears. In the same way the other two modes
of z 2 g are enforced. The resulting influence matrix has the desired properties in
order to enforce the continuity equation and the definition of the vorticity in the
domain D.

6. DISCUSSION AND CONCLUSION

All results presented in this section are based on enforcing the vorticity definition
on the boundary of the computational domain. Results based on enforcing the
continuity equation in the way suggested in Section 5 agree within machine accuracy
with those based on enforcing the definition of the vorticity.

Before presenting some results of simulations of the 2D driven cavity and spin-
up flows, we start with a summary of a more detailed assessment of the implementa-
tion of the tau correction in the algorithm which can be achieved by studying the
behaviour of the divergence of the velocity field during time marching and by
checking the deviation of the vorticity definition. The latter is denoted by dg 5

g 2 k ? (= 3 u). The divergence and dg has been measured by means of an L2-
norm. The dimensionless divergence of the velocity field obtained for 2D driven
cavity and spin-up flows for Re 5 1000 are plotted Figs. 1a and 1b, respectively.
These numerical experiments were performed with 25 3 25 and 33 3 33 Chebyshev
modes. The mean dimensionless velocities for the driven cavity flow are O(1), and
it can therefore be concluded that the divergence of the velocity field in that example
is machine accurate zero. For spin-up, the L2-norm of the divergence is normalized
by the root mean square velocity (the kinetic energy of spin-up flows always de-
creases in the course of time due to damping). Figures 2a and 2b provide plots of
the L2-norm of dg for the same set of simulations (for spin-up, dg is normalized
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FIG. 1. The L2-norm of the dimensionless divergence as function of dimensionless time for
(a) driven cavity and (b) spin-up flows. The results for spin-up are normalized by the RMS velocity of
the flow.
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FIG. 2. The L2-norm of the deviation of the vorticity definition dg (dimensionless) as function of
dimensionless time for (a) driven cavity and (b) spin-up flows. The results for spin-up are normalized
by the RMS vorticity of the flow.
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FIG. 3. The final steady state of the vorticity in the 2D driven cavity for Re 5 400 (a) and Re 5

3200 (b). The contour levels are chosen as in the benchmark results of Ghia et al. [27].

by the root mean square vorticity) and it can be concluded that also the vorticity
definition is satisfied within machine accuracy. The vorticity field in the computa-
tional domain D also satisfies the integral condition expressing that the total circula-
tion is equal, within machine accuracy, to the contour integral of the tangential
component of the velocity along the boundary of the domain D.

6.1. Flow in a Driven Cavity

Two-dimensional flows in a square cavity with a moving (upper) lid have often
been used to test numerical schemes. The main source of benchmark data is the
paper by Ghia, Ghia, and Shin [27], who studied driven cavity flows for Reynolds
numbers ranging from 100 to 10000 (where the Reynolds number is based on the
velocity U of the moving lid and the size L of the cavity, Re 5 UL/n). Their
numerical procedure was based on the solution of the incompressible Navier–Stokes
equations with a multigrid method using stream function and vorticity as dynami-
cal variables.

We have calculated the final steady state of the flow in the 2D driven cavity for
Re 5 400 and Re 5 3200, where a desingularization of the motion of the lid near
the top corners, as proposed by Madabhushi et al. [12], is used. The results, which
are shown in Figs. 3a–b (vorticity) and Figs. 4a–b (stream function), are in good
agreement with those reported in the literature [15, 27]. The vorticity and stream
function plots are based on simulations with 41 Chebyshev modes in each direction
for Re 5 400 and 65 Chebyshev modes in both directions for Re 5 3200.

We have also compared our results with data obtained for the so-called regularized
driven cavity. The horizontal speed of the upper lid of the cavity is now utop 5

(x2 2 1)2 as used by Demaret and Deville [28], Shen [29], and Phillips and Roberts
[30] in previous studies. We see that utop $ 0.99 for uxu # 0.07, thus the forcing is
much weaker than in the case of the nonregularized driven cavity. This is also
reflected in the total energy calculated for the final steady state; the total energy
for the regularized driven cavity is roughly only half of that for the nonregularized
driven cavity. The stream function and vorticity in the cavity after the steady state
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FIG. 4. The final steady state of the stream function in the 2D driven cavity for Re 5 400 (a) and
Re 5 3200 (b). The contour levels of the stream function are plotted from c 5 0 to c 5 20.11 (Re 5

400) or c 5 20.12 (Re 5 3200) with steps of 0.01 (drawn lines). The contour levels in the corner vortices
(dashed lines) are from 1024 to 6 3 1024 with steps of 1024 (Re 5 400) and from 5 3 1024 to 2.5 3 1023

with steps of 5 3 1024 (Re 5 3200).

has been reached agree with the results reported in previous studies. In Table I
some of our data and those from the literature concerning the position of the
primary vortex, and the value of the stream function in the centre of this vortex,
are summarized. Our data in Table I are converged and the number of Chebyshev
modes necessary to achieve four-digit convergence are presented in the second
column. For Re $ 2000 it appeared that the use of fewer Chebyshev modes than
listed in Table I give still quite accurate results. For example, the position of the
centre of the primary vortex and the corresponding value of the stream function
in the case Re 5 5000 obtained with a simulation with 37 3 37, instead of 65 3 65,
Chebyshev modes are also (0.038, 0.077) and 28.81 3 1022, respectively. A differ-

TABLE I
Properties of the Primary Vortex of the Regularized Driven Cavity

Re Grid Position (x, y) cmax Refs.

400 25 3 25 (0.155, 0.232) 28.59 3 1022

17 3 17 (0.156, 0.250) 28.58 3 1022 [29]
24 3 24 (0.146, 0.242) 28.59 3 1022 [30]

1000 33 3 33 (0.085, 0.146) 28.72 3 1022

25 3 25 (0.094, 0.156) 28.72 3 1022 [29]
24 3 24 (0.098, 0.146) 28.71 3 1022 [30]

2000 33 3 33 (0.059, 0.106) 28.78 3 1022

33 3 33 (0.062, 0.094) 28.78 3 1022 [29]
25 3 25 (0.059, 0.105) 28.78 3 1022 [28]

5000 65 3 65 (0.038, 0.077) 28.81 3 1022

33 3 33 (0.032, 0.062) 28.80 3 1022 [29]
32 3 32 (0.050, 0.074) 28.80 3 1022 [30]

Note. Compared with results from Demaret and Deville [28], Shen [29], and Phillips and Roberts [30].
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ence was found in the fourth digit only. The characteristics of the secondary vortices,
in the corners of the cavity, are also in good agreement with those reported in
the literature.

6.2. Two-Dimensional Spin-Up in a Square Container

Spin-up is the adjustment process of fluid in a container, initially rotating with
an angular velocity V, after a sudden change of the rotational velocity of the
container from V to V 1 DV at t 5 0. In a coordinate system corotating with the
container one observes a large anticyclonic cell that fills the domain entirely; this
motion arises because of the inability of the fluid to follow the change in rotation
of the boundaries. At t 5 01 boundary layers are set up and cyclonic vorticity,
generated in the boundary layers, will be advected by the primary anticyclonic flow
along the sides of the container. In the subsequent stage it is observed that, when
the Reynolds number is large enough, boundary layer separation takes place and
the advected cyclonic vorticity accumulates in small cyclonic cells in the corners of
the container.

In numerical studies it appeared that spin-up simulations for intermediate and
higher Reynolds numbers are quite difficult to perform. This is mainly due to the
appearance of very thin boundary layers at t 5 01, in which the vorticity can have
large values. In order to obtain a sufficient boundary layer resolution, a quite large
number of Chebyshev modes is required. The initial (dimensionless) energy of the
flow is also one order of magnitude larger than in steady-state driven cavity flows;
thus more interesting flow features might be expected for spin-up flows than for
driven cavity flows for comparable Reynolds number. These observations led to
the conclusion that simulation of spin-up flows could serve as a more critical test
for pseudospectral algorithms than 2D driven cavity flows. However, no benchmark
data for spin-up in square containers exist to compare our results with for this
particular test.

The starting flow for 2D spin-up in a square container, with sidewalls of length
L, is found by simply assuming solid-body rotation of the fluid with respect to the
corotating coordinate system. The initial flow field then has the form: u 5 r 3 DV.
As a result, the dimensionless vorticity in the interior at t 5 0 is g 5 22. In Figs. 5
and 6 we show two typical stages of the spin-up process for two different values
of the Reynolds number: one for Re 5 500 and another for Re 5 2500. In both
cases the Reynolds number is defined as Re 5 AfL2 DV/n. In the first example no steep
vorticity gradients are observed, nor any appreciable boundary layer separation. The
final stage, at nondimensional time t 5 125 (one rotation period of the container
with respect to the original angular velocity of the container at t , 0 corresponds
with a dimensionless time t 5 2f) appears to be close to the final viscous decay
stage [31]. The second example of spin-up (Re 5 2500) shows steep vorticity
gradients and the appearance of secondary cells in the four corners of the container
(t 5 5). These cells are gradually destroyed by the strong central core, and the
vorticity distribution at t 5 50 shows that the flow is reaching a more or less viscous
decay stage (compare Fig. 6b with Fig. 5a).

Accurate values of the dimensionless vorticity and stream function at several
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FIG. 5. Some snapshots of the flow evolution during spin-up for Re 5 500. Dashed lines represent
contours of positive vorticity; drawn lines represent contours of zero or negative vorticity. The vorticity
is nondimensionalized by DV. The steps between the contours is 0.5 for t 5 12.5 (a) and 0.025 for t 5

125 (b). The dimensionless time t 5 2f corresponds to one rotation period T of the container with
respect to the original angular velocity of the container; thus T 5 2f/DV.

times during the spin-up process are listed in Tables II–IV for Re 5 500, 1000, and
2500, respectively. The vorticity is made dimensionless by DV and the values of
the stream function by AfL2 DV.

6.3. Natural Convection in a Square Cavity

Finally, another interesting comparison with benchmark computations is possible:
simulations of natural convection in a square cavity with adiabatic top and bottom
walls based on the 2D Boussinesq equations as performed by De Vahl Davis [32]

FIG. 6. Some snapshots of the flow evolution during spin-up for Re 5 2500. Dashed lines represent
contours of positive vorticity; drawn lines represent contours of zero or negative vorticity. The vorticity
is nondimensionalized by DV. The steps between the contours is 3 for t 5 5 (a) and 0.5 for t 5 50 (b).
The dimensionless time t 5 2f corresponds to one rotation period T of the container with respect to
the original angular velocity of the container; thus T 5 2f/DV.
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TABLE II
Values for the Stream Function and Vorticity at Five Locations in the Container for a

Spin-Up Simulation with Re 5 500

(x, y) t c(x, y) g(x, y)

(0.0, 0.0) 25 22.566 3 1021 21.913
50 21.354 3 1021 21.232

100 23.622 3 1022 23.404 3 1021

(0.0, 0.4) 25 21.840 3 1021 21.427
50 29.159 3 1022 26.997 3 1021

100 22.426 3 1022 21.819 3 1021

(0.0, 0.8) 25 23.534 3 1022 5.700 3 1021

50 21.586 3 1022 3.188 3 1021

100 24.014 3 1023 1.040 3 1021

(0.4, 0.4) 25 21.227 3 1021 27.551 3 1021

50 25.864 3 1022 22.706 3 1021

100 21.560 3 1022 26.551 3 1022

(0.8, 0.8) 25 1.085 3 1023 3.297 3 1021

50 1.588 3 1024 1.460 3 1021

100 21.099 3 1024 3.768 3 1022

TABLE III
Values for the Stream Function and Vorticity at Five Locations in the Container for a

Spin-Up Simulation with Re 5 1000

(x, y) t c(x, y) g(x, y)

(0.0, 0.0) 25 23.410 3 1021 21.999
50 22.501 3 1021 21.903

100 21.311 3 1021 21.208

(0.0, 0.4) 25 22.612 3 1021 21.904
50 21.781 3 1021 21.397

100 28.822 3 1022 26.791 3 1021

(0.0, 0.8) 25 25.834 3 1022 6.913 3 1021

50 23.358 3 1022 5.931 3 1021

100 21.519 3 1022 2.989 3 1021

(0.4, 0.4) 25 21.853 3 1021 21.460
50 21.176 3 1021 27.145 3 1021

100 25.597 3 1022 22.539 3 1021

(0.8, 0.8) 25 2.358 3 1023 4.456 3 1021

50 1.356 3 1023 2.805 3 1021

100 4.057 3 1024 1.354 3 1021



208 H. J. H. CLERCX

TABLE IV
Values for the Stream Function and Vorticity at Five Locations in the Container for a

Spin-Up Simulation with Re 5 2500

(x, y) t c(x, y) g(x, y)

(0.0, 0.0) 10 24.538 3 1021 22.000
20 24.202 3 1021 22.000
50 23.488 3 1021 22.000

(0.0, 0.4) 10 23.735 3 1021 22.000
20 23.391 3 1021 22.000
50 22.686 3 1021 21.948

(0.0, 0.8) 10 21.284 3 1021 21.539
20 28.859 3 1022 8.124 3 1021

50 25.785 3 1022 9.003 3 1021

(0.4, 0.4) 10 22.949 3 1021 22.000
20 22.649 3 1021 21.994
50 21.922 3 1021 21.589

(0.8, 0.8) 10 21.631 3 1022 23.915
20 25.445 3 1023 21.956 3 1021

50 1.248 3 1023 2.110 3 1021

and Le Quéré [33]. This problem is free of any singularity in the boundary conditions,
except the presence of the corners. This makes it more attractive than some other
problems to test the accuracy of high precision schemes. With the length of this
paper in mind only the conclusions of a comparison, based on calculations which
are summarized elsewhere [34], are given. The results for the simulations compare
within the estimated error of 0.1% with the benchmark simulations by De Vahl
Davis, which are obtained with a second-order finite difference scheme and a
Richardson extrapolation scheme. The computations compare even exactly with
the data presented by Le Quéré, who obtained his results using a pseudospectral
Chebyshev algorithm for the Navier–Stokes equations in the primitive variable
formulation.

6.4. Conclusion

We have shown that it is possible to solve the Navier–Stokes equations in the
velocity–vorticity approach by employing spectral methods. The proper relationship
between the vorticity and velocity and the requirement that the flow should be
divergence-free are enforced with an influence matrix technique, including a tau
correction procedure. The influence matrix is nonsingular. The tau correction proce-
dure appeared to be essential in order to avoid catastrophic numerical instabilities.
To our knowledge no solution procedure based on a Chebyshev expansion in two
nonperiodic directions has been reported in the literature so far for this formulation
of the incompressible Navier–Stokes equations.
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With the proposed procedure it is possible to obtain machine accurate divergence-
free flow fields by either enforcing the vorticity definition or enforcing the continuity
equation on the boundary of the computational domain. A minor point of concern
from a mathematical point of view is the treatment of the four corner values of
the vorticity in the influence matrix when using the approach where the definition
of the vorticity is enforced on the boundary. These values are set equal to zero
beforehand, which is not entirely justified mathematically. Comparison of the nu-
merical results obtained for 2D-driven cavity flows with data from the literature is
satisfactory. There are not many results available with which to compare spin-up
simulations, but the present results for low and intermediate Reynolds number
show the same features as found with finite difference codes. High Reynolds number
simulations of spin-up yield accurate results, despite the singular character of the
initial conditions.

An important issue is the extension of influence matrix techniques for application
in 3D flow simulations, which is in principle possible. The main problem which has
to be solved concerns the considerable increase in size of the influence matrix. Its
size is determined by the number of collocation points at the surface of the 3D
computational domain. A prohibitively large influence matrix can be avoided by
restricting oneself to flows which are periodic in one direction, resulting in 2D
influence matrices for each wave number. This approach is employed by, for exam-
ple, Madabhushi et al. [12] for the simulation of the decay of 3D perturbations in
a fully laminar flow through a square duct and by Le Quéré and Pécheux who
computed convection in a rotating annulus with top and bottom rigid walls [35].
An alternative approach might be the combination of the influence matrix technique
and spectral element methods, resulting in one or a few considerably smaller influ-
ence matrices. This approach becomes even more advantageous when parallel
computing is utilized.
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